FPGA Based Edge Detection Architecture for
Embedded Applications

1%t Lucas Caetano Pereira ,2" Vagner Rosa,3™ Nelson Lopes Duarte Filho
Centro de Ciencias Computacionais - C3
Universidade Federal do Rio Grande - FURG
Rio Grande, Brazil
caetano02117 @gmail.com, vsrosa@gmail.com, nelson.duartefilho @ gmail.com

Abstract—Real-time image processing dependent applications
are widely spread in the present industry and the academy. Such
applications include inspection of industrial processes, object
tracking, facial analysis and many others. In these kinds of
applications detection of edges in the input image is a basic
but fundamental step whereas this process remove unnecessary
information and brings up the information needed in ensuing
processing steps. A common approach to detect the edges of
a image is to apply the Sobel filter allied with some noise
reduction method. The Sobel filter is a gradient based method,
that highlight the edge pixels of a image. FPGAs are a effective
type of device to process in real time vast amounts of data
such as the pixels of a image due it’s fine-grain parallelism
and re-configurable structures. This paper describes a hardware
architecture for edge detection which consists of a Mean Filter
for noise reduction and a Sobel Filter. Both method implemented
for Field Programmable Gate Array (FPGA) technology as 8-bit
architectures .

I. INTRODUCTION

Modern manufacturing environments have nowadays vast
and complex production lines that depend in many cases
of real-time based inspection processes in order to ensure
quality and the reproducibility of the final product and increase
produtivity levels in the whole scope of the production routine.

Other field widely dependent of efficient image processing
running at real-time is the autonomous cars research [1], where
a good understanding of the scene of a image and the object
present in it. In this kind of application the correct processing
of the image information guarantee the safety inherently
necessary for the well functioning of the autonomous car by
reliably providing useful information of the image.

The noise present in a digital image, which is essentially a
random variation of color and brightness can in many cases
hide important information contain in the original image,
making it difficult the correct extraction of certain image
features. Therefore, ensure that only the important morpho-
logical information about the scene are highlighted and the
noise present in the image be discarded is vital in any image
dependent application.

The edges of image are considered to be most important
image attributes that provide valuable morphological infor-

*This work was supported by CNPq — National Counsel of Technological
and Scientific Development

All authors are with the Center of Computer Science, Federal University
of Rio Grande, Rio Grande - RS, Brazil

Fig. 1. Convolution of a image with a kernel [3]

mation of the object in the scene. The quality of the de-
tected edges play a important role in more complex image
processing routines and in the correct behavior of real-time
computer/machine vision systems. Such be in manufacturing
environments, autonomous vehicle research and many other
applications. Thus edge detection is one of the most important
processes in lower level image processing to understand the
information contain in a image. The literature presents a series
of edge detection methods, for the architecture presented in
this paper, the chosen approach is to apply a mean filter to
reduce the noise in the input image, next apply the Sobel
operator to accentuate the edge pixels and then apply a
threshold to let only those pixels visible.

FPGA are suitable for applications that require real-time
processing of large data amounts due the high hardware cus-
tomization and parallelization offered for this technology. In
this research field FPGAs have shown very high performance
although the low frequencies FPGA commonly operates. Such
performance came from high need of parallelism in image
processing and the possibility of instantiate large internal
memories banks on FPGAs that can be accessed in parallel

[2].
II. IMPORTANT CONCEPTS

A. Convolution of a Image

Convolution is the process of adjust the value of each pixel
of a image based in a weighted value of it’s neighbors through
the passing of a kernel, Fig 1. The kernel slides over every
pixel of the image and a new value to each pixel is calculated
as a weighted sum of the nearby pixels.

B. Mean filter

The mean filter, or average filter is a convolution based
method that calculates a new value for pixel in the center
of the kernel based in the average value of the pixels inside
the kernel window. This process smooth the image, working
as a Low-pass filter and reducing the noise in it. The size
of the kernel can change dramatically the results since the
information of each pixel is affected by increasingly distant
pixels as the kernel grows, the shape on the other hand can by
any. The usual approach for this filter in most applications is a
3x3 square kernel, this combination of size and shape require
that each position of the kernel be 1/9 in order to correct
calculate the average value of the pixels. This configuration is
show in Eq.1

1/9 1/9 1/9
K=11/9 1/9 1/9 (1)
1/9 1/9 1/9

C. Sobel Filter

The Sobel filter is a widely used method that accentuate the
pixels on the edges of a image by calculating a approximation
of the intensity gradient of the image in each pixel. This
calculus is done through the convolution of two 3x3 Kernels
with the image [4]. The two kernels represented in Eq.3 and
Eq.2 are each used in separated convolution processes with
image to generate the gradients Gx and Gy.

+1 42 +1
K,=|0 0 o0)
1 -2 -1
-1 0 +1
K,=|-2 0 42 3)
-1 0 +1

Then the absolute values of both gradients are added, reaching
the value of the resultant gradient Eq.4

G:|Gw|+|Gy| (€]

After the final gradient G, or transient image, have been
calculated, each pixel P of this new image is compared with a
predefined threshold value T in order to determine if the pixel
is an edge pixel or not. If a pixel is greater than the threshold
value, that pixel is considered to be a edge pixel and its final
value P’ is set to 1, else ways the pixel is considered a non
edge pixel and its value is set to 0, Eq.5.

P,{l,ifP>T} 5)

0,else

III. METHODOLOGY

The architecture proposed in this work has been developed
using VHSIC Hardware Description Language (VHDL) and its
behavioral simulation was made with the ModelSim software
by Altera. A testbench were implemented also in VHDL
language to stimulate the digital design containing the filters

MODELSIM

TESTBENCH PROPOSED ARCHITECTURE

SOBEL FILTER

I
I
I
I I MEAN FILTER
I
I

TEXTIO

THRESHOLD

Fig. 2. Simulation Methodology

and interact with the input and output files. In order to convert
the image in a format more easy to work with in the VHDL
context, two scrips were made with the Matlab software, the
full simulation enviroment can be se in Fig.2.

The first step in the simulation cycle is performed by one
of the script cited previously. The procedure is to transform
the input RGB image into a gray scale image, decompose this
image into a bit vector containing each pixel of the image
and create a .dat file to be read by the testbench. During the
simulation process a TEXTIO based application following the
implementation in [5] whitin the testbench file reads the .dat
file and stimulate the implemented architecture with each pixel
of the image sequentially.

>>16 >>32 >>64

WWJ
5

Fig. 3. Approximation of the 1/9 ratio.

After those stages, the proposed design operates on the
given image, first with the Mean filter to smooth the image,
removing noise. As stated in previous sections the classic
Mean filter present in literature uses a kernel full with the value
1/9 to fulfill its function. But the division operation can be high
costly in a hardware context, so a valuable approximation has
to be found in order to simplify the implementation of the
Mean Filter.

% =0.111111 (6)

1
EJr:,)—2+6—4 0.109375 (7

~

1 1 1 1
1—6+3—2+@:§ (8)

As show through Eq. 6, 7 and 8 the values of 1/9 and 1/16
+ 1/32 + 1/64 can be considered as almost equivalent. This
new value is much more suitable to be implemented in VHDL
once its composed by sums and divisions by powers of 2, witch
are essentially shifts, a much more fundamental operation in
a hardware context. This new value was used to develop the
digital circuit that apply the Mean filter over the given input
image. Let P,, be a pixel in the input image, by shifting the
value of this pixel three times, four times and five times right
the result values are the value of the pixel divided by 16,
32 and 64 respectively. Those values are sum to obtain the
weighted value of the pixel P’,,, Fig. 4.

[PEPEPEP?

Wﬁ ﬁf
vy

+
|

vy

+

v

PIXEL VALUE

Fig. 4. Implemented Architecture of the Mean Filter.

After the weighted values of each pixel P’ in the kernel are
calculated, all values are sum in order to reach the final value
of the pixel at the center of the kernel in the new image Fig.1.

The next process is the applying of the Sobel Filter over
the image. The digital circuit implemented to applying the
Sobel Method in the input image is a combinational 8-bit
architecture that follows the design described in [6]. As show
in Fig. 5 the implemented design shifts the value of each pixel
in involved twice right, this operations is done to keep the 8-bit
architecture of a possible overflow.

900000000

552 532 >>2 >>2 >>2 >>2 >>2 >>2

%ﬁ;Ji 'f
j |

| | ’
lV U

PIXEL VALUE

A

Fig. 5.
applying.

Implemented Architecture of the Sobel method and Threshold

Then the adjusted values are sum and subtracted in order to
find the values of the gradients Gx and Gy. Two multiplexers
are used to get the absolute value of each of the gradients. Next
the values of each gradient are compared with the threshold
throught the overflow signal of two subtraction blocks. If
the threshold if greater than both the gradients, the pixel is
considered not a edge pixel and its value is set o 0, otherwise
the value of the pixel is set to 1.

As each pixel pass through the entire architecture, being pro-
cessed by each filter and having passed through the application
of the threshold, those pixels are delivered by the simulated
architecture to the TEXTIO application in the testbench to be
written in a output .dat file. With the second script developed
with Matlab the output .dat file is assembled into the final
image.

IV. RESULTS

The implemented architectures for the application of the
selected filters successfully extract the edges of a given input
image. The Fig. 6 presents a input image at all processing
stages, in the left upper corner the original image is displayed,
followed by the image after the applying of the Mean Filter
in the right upper corner. In lower segment of the figure, the

Fig. 6. Input image, the image after the sobel method and after the threshold
apply

version of the image after the Sobel Method be applied can
be see, before the threshold been applied in the left and after
in the right.

V. CONCLUSION AND FUTURE WORKS

This result demonstrates that fundamental image processing
procedures can be brought to the hardware and that FPGA
devices are employable in implementing these basic blocks.
Allowing image processing dependent applications to balance
the processing load between their hardware and software
components. This also enables these applications to enjoy the
high scalability and parallelism offered by FPGA devices.

SOBEL FILTER

MONITOR CAMERA

Fig. 7. Future Embedded Architecture

In future works this architecture will be embedded in a
DEO-NANO industrial board developed by Altera to be fully
integrated with the camera TRDB-D5M using the VHDL
modules implemented in [7] and a interface with a monitor will
also be implemented, resulting in the architecture demonstred
in Fig. 7

Hereafter other filters and basic blocks commonly used in
image processing will be implemented in VHDL and simulated
in order to compare its results with the presented in this work
and others.

(1]

(2]

(3]

[4]

[5]

(6]

(71

REFERENCES

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, June 2012, pp. 3354-3361.
T. Saegusa, T. Maruyama, and Y. Yamaguchi, “How fast is an fpga
in image processing?” in 2008 International Conference on Field Pro-
grammable Logic and Applications, Sept 2008, pp. 77-82.

C. Olah. Understanding convolutions. [Online]. Available:
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001.
S. Zhang, J. Zhu, and C. Wang, “Application of textio in the simulation
of fpga image processing algorithm,” in Information Science and Control
Engineering (ICISCE), 2016 3rd International Conference on. IEEE,
2016, pp. 235-238.

N. Nausheen, A. Seal, P. Khanna, and S. Halder, “A fpga based imple-
mentation of sobel edge detection,” Microprocessors and Microsystems,
vol. 56, pp. 84-91, 2018.

S. C. da Silva Filho, “Sistema embarcado para mapeamento de chanfros
em chapas metalicas usando fpga e cmera,” Rio Grande, 2015.

